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Abstract

In this paper I’ll derive a novel algorithm that can be used to derive rapidly converging infinite series for
various mathematical constants such as pi and values of the gamma function. A compendium of new
infinite series is given.

Introduction

The purpose of this paper is lay out a novel, explicit algorithm that can be used to derive
elegant, rapidly converging infinite series for various mathematical constants. New
formulas for pi, gamma function, and other constants are derived inspired by David &
Peter Borwein [2], Simon Plouffe, Travis Sherman [3], Christian Krattenthaler [4], and
Boris Gour“evitch & Jes"us Guillera Goyanes [1], Bellard [6] who wrote similar papers
based on deriving infinite series for constants.

Examples of formulas that can be derived though the algorithm include:
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These formulas were derived with the following integrals which we shall prove in this
paper:
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We’ll also prove the more comprehensive integral-polynomial relation. This is the so
called “‘machinery’ behind these infinite series:

F(a+1)r(b+1) g (a+1)kn(b+1)sn (w) |-
z-T(a+b+2) & (a+b+2)(k+s)n(z)n

IlQ(x)xa(l—x)b . ﬁxag—x)b i

1.4
0 z—x¥(1-x) (x) (14)

. d a+g+kn a pl a+g+kn .
Peala+b+g+1l+(k+s)n| Pl a+b+g+l+(k+s)n

N a+1+kn N
4 a+b+2+(k+s)n

Derivation of Algorithm

We will begin by deriving formula (1.3) and apply it to derive the more complicated
identity (1.4)

Following the steps outlined in Boris Gour”evitch, Jes"us Guillera Goyanes’ paper ref [1],
first consider the beta function:
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Then divide both sides by z" and take the summation
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This is equal to:
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Summing an infinite geometric series as shown in ref [1]:
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Using the identity: (F(W))(W)n =T'(W+n) we derive:
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Plugging equations (2.1) and (2.2) into (2.0) and re-arranging terms we get equation (1.3)

To make the integral useful for computing constants begin with a so called ‘seed
integral’ Such an integral must be in the form:

J'4dx ¢ where P(x)is a polynomial and C is a constant

Then choose integer values of k and s such that the polynomial expansion of

—Xx(1- X)S is divisible by P(x). The value of zis determined by computing the
quotient polynomial Q(X) via polynomial long division such that the following identity
is obtained:
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Q(x) can be generalized to: Q(X)=a,x" +a, X" ™"..ax+a,
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Multiplying .[o - dXx by Q(x)and splitting the a coefficients of Q(x)
YA
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Each of these @, .... 8, split terms can be plugged into equation (1.3)
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Also note the following pochhammer and gamma function identities:
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Putting it all together utilizing (2.3) and (2.4) gives:
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Also note how the | [(a+b+g+1) and [ J(a+g) are eliminated such that we
g9-1 =1

simplify and obtain:
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Performing this procedure for a, ... a,, summing the p+1 terms, and factoring out
(a+1), (b+1)

(a+b+2)

N gives equation (1.4), which completes the proof.
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One final pochhammer identity that will be encountered frequently in this paper is
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Another forumula that will be used extensively later is the Euler integral:
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Deriving infinite series for a constant (c) is as simple as plugging in values of k, s, a, b, z
and the a coefficients of Q(x) into formula (1.4).

Deriving Formulas for Pi

We shall use algorithm (1.4) to find various rapidly converging formulas for pi. We’ll
begin by deriving formula (1.1)

Consider a hypergeometric function for arcsine converted into integral form via (2.6)
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Then let w=1/2 so that == — '[
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To derive a rapidly converging infinite series for this integral using (1.4) let k=1 and s=2.
Then let a=-1/2 b=0 and P(x) =1+§and find Q(x) such that:

Expand z—x(1- x)2 and perform polynomial division §+1>—x3 +2X° —X+1

A value of z = -48 and Q(x) =-3x* +15x —48is obtained. Thus:

1 x’“2 —5x +16) 1l —73
j - dx=?f = (2.8)
0 ) 01+ —

Then plug the following values into (1.4):

a=-1/2, b=0, k=1, s=2, z=-48, a, =16, a, =-5, a, =1 and obtain:
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Using identity (2.5) and simplification on the equation above, formula (1.1) is derived:
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Interestingly, formula (1.1) converges at a rate of log(324) or 2.5 digits per term using an
arcsine formula for %2, whereas the original arcsine formulas utilizing the binomial
theorem converge at best at a rate of only log(4) for %. Yet formula (1.1) is compact,
unique, and converges about four times faster.




A faster formula can be obtained that adds five digits per term. Let s=4, k=2, a=-1/2, and
b=0. P(x)= (1+%) Then expand z—x*(1— x)4 and performing division for Q(x) the

following identity is obtained:
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After some labor a pi formula derived using (1.4), in *‘BBP’ notation [2]:
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Or using identity (2.5) we can express (2.10) in pochhammer notation:
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To derive another pi formula let s=2, k=2, a=-1/2, b=0 and P(x) = 1+3 to obtain:
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After some labor using (1.4) we get the BBP form equation below which ads 3.4
digits/term:
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Using Multivariable Values of P(x) and Q(x) to Derive Infinite
Series for Pi

A slew of binomial identities for pi and other constants can be found using equations
(1.3) and (1.4), but extending it to multiple variables. In this section Q(x) becomes
Q(x,w), P(x) becomes P(x,w), and z becomes a function of w.



To begin, using equation (1.3) let a=0, b=0, k=1, s=1, z=w to obtain the identity:
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By evaluating the left hand integral we see that (3.1) is equal to [3]:
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Do derive a faster series for (3.1) let k=3, s=3, a=0,b=0, z=z, and expand z—x*(1— x)3

(3.2)

And let P(x,w) = x* — X +W. Performing polynomial division, we need to find Q(x,w) and

anew value of z in terms of W.(x2 - x+w))(x6 343 =X+ z)

We find: Q(x,w)=(x*-2x"+(1-w)x’ + xw+w’),z=w’ Therefore:
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With regards to equation (3.1) we can let w=w? divide by w, and take the derivative in
terms of w such that:
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An arbitrary number of integrals and derivatives of (3.4) can be taken in terms of w to
obtain various central binomial identities.

Applying formula (1.4) on (3.3), and after some labor obtain:
(The variable r denotes the powers of n that results from taking multiple derivatives)
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To derive an elegant pi formula let r=0 and w=w? in (3.5). Then divide (3.5) by w and
take multiple derivatives such that the denominators vanish, ensuring you divide (3.5) by
w each time before the derivative is taken. Then finally let w=1 to obtain the identity:
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Using (3.4) and taking multiple derivatives we arrive at:
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A faster converting series can be obtained by letting k=5, s=5 such that

1 Q , 1 1
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Using formula (1.4) and after some labor the identity is obtained:
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Rapidly Converging Infinite Series for the Gamma Function
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Elegant, rapidly converging infinite series for the gamma function such as (1.2) can be
derived using identities (1.3) and (1.4). In this section we’ll also prove an ‘accidental’
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quadratic hypergeometric transformation that is a byproduct of this method, as well as
other identities.

Begin with Kummer’s formula [5] and express it in integral form via (2.6):
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Since —2—-x(1-x)=(x—2)(x+1) wecanletk=1,s=1,z=-2and Q(x)=x-2
And after isolating the integral in (4.1) we have the identity:
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The leftmost integral in (4.3) can be evaluated using (1.4). setting a, =-2 a, =1
a=h-1b=1-2h:
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After some labor and using (2.5) we obtain this quickly converging formula for
computing values of the gamma function:
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To derive (1.2) let h=1/3 in equation (4.3) and simplify:

3/2223[T(13)] _ i (2/3). (2/3) (3n+2)
o 5 (-8)'(7/6),(5/3),
But (2/3), (3n+2)=2(5/3), so we can write:
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187 0 7/6)n 36 8

(4.4) happens to also be a quadratically transformed hypergeometric function, which via
(2.6) can be converted to an integral:
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dx
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)
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After some labor we obtain the simplification:

dx (4.5)

4.32.7 xV3 (1- X)_U2
_I 1+x/8
Letting

k=1s=1a=-1/3,b=-1/2,P(x)=(1+x/8),
Q(x)=(8x-72),z=-72,8,=8,8,=—

We arrive at the identity:

J.l X3 (1-x)"" i J-l x 3 (1-x) " (8x-72) i
0 1+x/8 0 —72-X(1-x)

Plugging the above values into (1.4) and simplifying through (2.5) we get (1.2):
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An even faster formula for F(1/3) can be found that gives 3.6 digits/term though the
following integral identity where we let s=2 and k=1:

1X 2 (1-x) v dy— 1X (1 X)fl/z(—x2+10x—81) dx—ﬁ\/é
_I 1+x/8 _IO —648— X (1-X)’ 18

Applying (1.4) and (2.5) and after some labor obtain:
3
91-32[T(13)] _ & (2/3),(14),(3/4), (8400n" +9248n +2297) “s)

2"z & (1918) (2518), (3118), (4374
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Higher Order Constants & the Limitations of Accelerating the
Generalized Hypergeometric Function

There series we’ve been deriving so far involve constants that can be expressed though
the hypergeometric function of the form 2F1{1, X;Y; z} . Such constants involve
logarithms, root extractions, the gamma function, and inverse trigonometric functions.
Higher order constants such as Catalans’s Constant, Zeta 3, etc can’t be expressed
through 2F1{1, X;Y; z} , but require a more generalized hypergeometric function of the

form: ,F, {1,x1,...,xq;y1;...;yq;z}.

Unfortunately, the algorithm (1.4) isn’t as efficient at generating rapidly converging
series for constants that are only expressible though a hypergeometric function where
g>1. To the best of my knowledge for (1.4) to work on higher order constants such as
Zeta 3, the value of “S’ must be set to zero. Accelerating the convergence of a g>1
hypergeometric function via (1.4) by setting s=0 equates to taking multiple terms of

Fy {1 X0 Xy Vi Vi 2 'K terms at a time. So if k=2, the series generated by (1.4)

q+1" g
would converge at a rate of z2.

In this next example we will show how to accelerate the convergence of a
hypergeometric function of the form 3F2{1, X0 %o Vi3 Yoo z} using (1.4), and then apply it

to derive faster converging infinite series for Catalan’s Constant and F(]/4) :

Begin with the integrals:

T'(y,)
L(%,)T (Y, =%,

3F2{1, X, Xy; Y13 Yo 2} = )J‘;xxfl (1— x)yz_xz_lel{l, Xg; Yp; Xz} dX

(5.1)

VRN e ) i

2F1i1, % . =
{“””}rmwmemo 1-yxz

dy (5.2)

Using the integral (5.2), choosing the values below for k and s, and performing
polynomial long division we plug the following into (1.4):

1
S:0,k=2,b=(y1—x1—1),a=(x1—1),Z= %272
y 1
P(x,y,2) = (1-x2), Q(x v>(—)

And obtain:
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J'l yxl—l(l y)yl dy: 1yX1 (1 y)yl X1—1Q(X y Z)d _
0 P(xY,2) 0 212_y2
X’z
(5.3)
x’2*-T'(x)T e XZ) X, +2n 1
(y Z 1 on (xz(y1+2n)+x222J

Plugging (5.3) into (5.2), and then plugging that result into (5.1) and simplifying we get:

F(yz) 1 X1 (1 Yp—Xo—1 X (X1)2n(xz)2n [Xz(xl+2n) ]}d
F(XZ)r(yz —X, '[OX ( X) nzz(:) (y1)2n y,+2n " X
(5.4)

=3F 2{1, %, %, ¥y, ¥2; Z}

Then we extract and convert the following integrals from (5.4) into pochhammer &
gamma notation via the beta function:

_Xz)

L N X:F(2n+X2)F(y2—X2)_(XZ)ZHF(XZ)F(yZ
X X =) (320 T0%,)

(5.5)

I1X2”+X2 (1- X)yz—xz—ldxz (2n+x,+1)(y,-X,) _ (X, +2n)(%,),, T (%)T (Y, —%,)
0 r(2n+y,+1) (y,+2n)(y,+1), T(y,)

Then plugging (5.5) back into (5.4) and simplifying gives the final result:

e ooy (%) (% )00 (2)™ [ 2+ 20) (%, +2n)
3F2{1,x1,x2,y1,y2,z}—r;) (Y2)2n (Y2)2n ((yl+2n)(y2+2n) +1J (5.6)

The procedure used to derive (5.6) can be generalized:

a1 P 1L X X Vit Vi 2 = E;M [1 §Z ii:] 1}]5!5;2 ;ZJ 5.7)

With regards to Catalan’s Constant it is well-known that
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Plugging the hygpergeometric terms of (5.8) into (5.6) and simplifying gives an infinite
series for (5.8) that converges twice as fast:

n=0(2n +1)2(inj n=0((4n+1)(4n+3)) [;:j (5.9)

i 1 & 40n% +54n+19

Using a transformation on (5.2) letting k=3 gives:

Q0 Q0 4 3 2
42 1 _268O4n +17172n° +15903n° + 6405n + 956

P[] B (ensaonsayons) ||

(5.10)

In addition, rapidly converging formulas for F(]/4) can be derived using (5.6) based on

accelerating a quadratic transformation. Begin with the following quadratically
transformed hypergeometric functions:

2F1{1 1. —1}=L2 (5.11)

447 8] 2ur(34)]

2F1{1 : ll}_ U (5.12)
4'4°79) Ar? '

(Note: Unlike equation (4.4), (5.11) and (5.12) can’t be derived with (1.4). Proofs
regarding quadratic hypergeometric transformations is given in [7].)

However, (5.11) is equal to 3F2{1 % % 11 ?1} and (5.12) can be written as

3F2{1% % 11 ;} Plugging these values into (5.6) and simplifying via (2.5) gives

36V3[T(V4)] & (640n° +608n+147)(8n)!

312 = z
Vs

= [(2n+1)1] (4n)r24* (5.13)
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12872 & gaan (18),(558), |
—7[2: Z(448|’] +448n +127)(—J (5.14)

2T (3/4)] 0 2"(2n+1)!

The formulas (5.13) and (5.14) conclude the paper. So far, we’ve proven and
showed examples how implementing algorithm (1.4) involving polynomial division can
be used to derive elegant, rapidly converging infinite series for various mathematical
constants, as well as accelerate the convergence of existing series as in examples (5.13,
5.14,5.9, and 5.10). To the best of my knowledge, most of the series derived in this paper
are original, although the procedure involving polynomial division isn’t. However, | have
yet to see an explicit, closed form algorithms like (1.3) or (1.4) for deriving a wide
spectrum of infinite series.

An open problem related to this paper is if there exists a transformation using
(1.4) oravariant of it for _, F, {1, Xyeees Xgo Yareees Yoo z} g>1 where s >0. My best attempts

to derive closed form, transformation for non trivial 3F2 or higher hypergeometric
functions for s>0 have failed. By non trivial what | mean is that x, —y_cannot be a

positive integer. 3F 2{1,4,5/2;3;1/3;z}, for example, is trivial because 4-3 is an integer.
3F2{1,3,5/2;4;1/3;z}, on the other hand, isn’t trivial because 3-4 is a negative integer.
Also, 5/2-1/3 isn’t an integer.

| would like to thank the Borwein brothers, Simon Plouffe and Boris Gour evitch
& Jes’us Guillera Goyanes for their work, which inspired me to write this paper.
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